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Abstract-The axially symmetric ftexural interaction of a uniformly loaded circular elastic plate resting in
smooth contact with a transversely isotropic elastic halfspace is examined by using a variational method.

I. INTRODUCTION
The analysis of interaction between structural elements such as beams, plates, etc. and elastic
media is of interest to several branches of engineering. Such solutions are of particular
importance in analytical studies related to structural foundations resting on soil and rock media.
This paper examines the application of an energy method to the analysis of the axisymmetric
interaction between a uniformly loaded thin circular plate and a transversely isotropic elastic
halfspace. The interface between the plate and the elastic halfspace is assumed to be smooth.
Furthermore it is assumed that no separation occurs between the plate and the elastic medium.

The energy method of analysis of the interaction problem centers around the development
of a total potential energy functional for the plate-elastic medium system, for prescribed plate
deflection w(r) which is indeterminate to within a set of arbitrary constants. The assumed form
of w(r) also satisfies the kinematic constraints of the axisymmetric deformation. The total
potential energy functional consists of the strain energy of the halfspace region, the strain of
the circular plate and the potential energy of the applied loads. The total potential energy
functional thus developed is defined in terms of the undetermined constants characterizing the
plate deflection. We may, however, eliminate two of these constants by invoking the Kirchhoff
boundary conditions applicable to the free edge of the circular plate. The remaining constants
are uniquely determined from the linearly independent algebraic equations generated from the
minimization of the total potential energy functional.

The method of analysis outJined here is used to examine the flexural interaction of a
uniformly loaded circular plate with a free edge resting in smooth contact with a transversely
isotropic halfspace. The boundary plane of the transversely isotropic elastic halfspace is
assumed to be perpendicular to the axis of elastic symmetry. The assumed deflected shape w(r)
is an even order polynomial in r up to the sixth order. This particular form of the deflected
shape is assumed to represent, approximately, the flexural performance of circular plates of
high relative rigidity. (The parameter, R...., characterizing the relative rigidity of the plate-elastic
medium system is defined by (21).)

The energy method of analysis yields analytical expressions for the central deflection, the
differential deflection and central flexural moment in the thin circular plate. The accuracy of the
energy estimate is compared with existing solutions for various choices of the relative rigidity
parameter (R.... -+0, or R.... -+00).

2. ANALYSIS

We consider the axisymmetric indentation of a transversely isotropic elastic halfspace by a
thin flexible circular plate of thickness h and radius a. The plate is subjected to a uniform load
of stress intensity Po over its entire surface (Fig. 1). Since no separation takes place at the
interface, the deflected shape of the plate w(r) also corresponds to the surface displacement of
the halfspace in the z-direction, within the contact region rs a.

For axially symmetric deformations of a thin plate, the flexural energy UF is given by

UF = DJJ [{V2w(rW- 2(1- v")dW(r)~]rdrd6
2 s r dr dr
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d2 I dV2 =-,,+-_'
dr rdr' (2)

and Eb and Vb are respectively, the elastic modulus and Poisson's ratio for the plate material
and S corresponds to the plate region.

The elastic strain energy in the transversely isotropic elastic halfspace can be developed by
computing the work component of surface tractions which compose the interface contact
stresses. Since the interface is assumed to be smooth, only the normal surface tractions
contribute to the strain energy. The normal stresses generated as a result of the imposed
surface displacement WeT) can be uniquely determined from the integral equation methods
developed by Elliott[l], Shield[2], England[3], Sveklo[4] and others for the analysis of mixed
boundary value problems associated with transversely isotropic elastic materials. We consider
the problem of a transversely isotropic elastic halfspace which is subjected to the axisymmetric
displacement field

uz=w(r) forz=O, O<r<a (3)

where Uz is the component of the displacement vector in the z-direction. The surface of the
halfspace is subjected to the traction boundary conditions

O'n =0 on z=0; 0< r < etl

O'zz =0 on z =0; a<r<etl
(4)

where 0':: and O'n are the normal and shear stress components of the Cauchy stress tensor
referred to the cylindrical polar coordinate system (r, 8, z). From the integral equation for
mulation of the mixed boundary value problem it can be shown that the compressive contact
stress at the interface is given by

where

_ 1 d fa tg(t)dt
O'u(r,O) - C.w(11 - 12)rdr r V(t2_ ?) (5)

(6)
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and 'Yi, ki (i =1,2) are constants related to the elastic constants til of the transversely isotropic
elastic material (see Appendix A). From the above results, the elastic strain energy of the
transversely isotropic elastic halfspace due to the indentation w(r) is given by

In general, the total potential energy of the externally applied axisymmetric load is given by

Up =- JJSp p(r)w(r)r dr dB (8)

where Sp is the region occupied by p(r).
The total potential energy functional for the plate-elastic medium system (U) is obtained by

the summation of (1), (7) and (8) (i.e. U =UF + UE + Up). For the total potential energy
functional to satisfy the principle of stationary potential energy we require

au=o (9)

where au is the variation in the total potential energy. In order to apply the principle of total
potential energy to the interaction problem we assume that the deflected shape w(r) can be
represented in the form

(10)

where CZi are arbitrary constants and cIlu(r) are arbitrary functions which satisfy the kinematic
requirements of the plate deformation. Of the (n + 1) arbitrary constants two can be eliminated
by invoking the Kirchhoff boundary conditions [5] applicable for the free edge of the circular
plate, i.e.

M,(a) =- D[dZw(r) + lib dW(r)] =0
"""'(iT2 r dr '-0

O,(a) =D[dd {V2 w(r)}] =o.r ,-tJ

(11)

Using the above conditions, the total potential energy functional for the plate-elastic
medium system can be represented in terms of (n -1) independent constants CZi. The principle
of total potential energy requires that U be an extremum with respect to the kinematically
admissible deflection field characterized by CZi (see, e.g. Sokolnikoff[6]). Hence

:~i =0 (i =0, 1•...• n - 1). (12)

The above minimization procedure yields (n -1) linear equations for the undetermined con
stants CZi (i =0.1,2•... , n -1).

3. ANALYSIS OF THE CIRCULAR PLATE PROBLEM

The formal theory developed in the preceding section is applied to the analysis of a
uniformly loaded circular plate (i.e. Sp =S), with a free edge, resting on a transversely
isotropic elastic halfspace. It is assumed that the deflected shape of the plate can be ap
proximated by the power series
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3 (r)2i
w(r) =a ~ C2i a (13)
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where C2i are arbitrary constants. We note that in (13), the particular choice of functions
corresponding to $2i(r) give a kinematically admissible plate deflection and finite flexural
moments and shearing force in the plate region 0 S r s a. Upon satisfaction of the Kirchhoff
free edge boundary conditions (II), the plate deflection (13) can be reduced to the form

(14)

where

(15)

The contact stress distribution corresponding to the imposed displacement field (14) can be
determined by making use of the relationships (5) and (6); we have

where

_ 2c44a [ {3 (r)2iJ]
uzz(r, O) - 1T'I'y!(a2 _ ?) Co + C2 ~ 'T/2i a ' (16)

(17)

and 'T/2i are constants defined in Appendix A. Also, by making use of w(r) as defined by (14),
the total potential energy functional U reduces to the form

(18)

and the constants Xn (n =1,2,3,4) are also defined in Appendix A. The constants Co and C2 can
be determined from the equations which are generated from the minimization conditions

aUaco=0;
aU
aC

2
=0. (19)

The deflected shape of the uniformly loaded circular foundation corresponding to (13) is given
by

and R.... is a relative rigidity parameter of the circular plate-transversely isotropic elastic
halfspace system defined by

(21)

The accuracy of the solution for the plate deflection «20)] developed by the variational
procedure can be examined by assigning suitable limits to the relative rigidity parameter R.....

4. LIMITING CASES

(i) Infinitely rigid plate
As the relative rigidity parameter R.... -+ OC, the interaction problem reduces to that of the
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smooth indentation of a transversely isotropic elastic halfspace by a rigid circular punch. In the
limit as R,4 ..... 00, (20) gives the following expression for thc constant displacement Wo

(22)

The above result is in agreement with the expressions obtained by Elliott[l] and Shield[2] for
the rigid displacement of a circular punch on a transversely isotropic elastic halfspace which
were obtained by considering, separately, integral equation methods and results of potential
theory respectively.

(ii) Rexible circular loading
As R,4 ..... 0, the interaction problem reduces to that of the axisymmetric loading of a

transversely isotropic elastic halfspace by a uniform circular load of radius a and stress
intensity Po. The two results of particular engineering interest are the maximum deflection w(O)
and the differential deflection {w(O) - weal} within the uniformly loaded area.

In the limit as R,4 ..... 0, the expression (20) yields

(23a)

The exact solution for the central deflection of a transversely isotropic elastic halfspace
subjected to a uniform circular load can be generated by making use of the results given by
Elliott[I] and Shield[2] for the surface and interior loading of a halfspace. We obtain

(23b)

The energy estimate for the central deflection of a uniformly loaded area overpredicts the exact
solution by approximately 4.5%.

Similarly, the energy estimate for the differential deflection of the uniformly loaded region is

(24a)

The corresponding exact solution for the differential deflection is

(24b)

The energy estimate for the differential deflection overpredicts the exact solution by ap
proximately 0.3%.

It may also be verified that in the limiting case of an isotropic material, the constants Cij can
be related to the Lame constants Aand IL as follows: ell =CJJ =A+21L, CI2 =CIJ =A, C44 =IL. If
we let Jlh J12 ..... 1, we find that '1' ..... (1 - JI) and the results (23) and (24) reduce to their
counterparts for isotropic elastic materials.

S. FLEXURAL MOMENTS

The flexural moments in the uniformly loaded plate can be determined by making use of the
expression for the plate deflection (20) and the relationships

(25)
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In general any inaccuracies in w(r) as computed by the energy method are magnified in the
computation of M, and M8 owing to the presence of derivatives up to the second order. A more
accurate estimate of the flexural moments induced in the plate can be obtained by computing
the flexural moments induced in the plate due to the combined action of the external uniform
load Po and the contact stress distribution O'::(r). Using this technique, it can be shown that the
central flexural moment (Mo) in the circular plate is given by

Using (16) in (25) we obtain

(27)

where mo and m2 are defined in Appendix A.

6. NUMERICAL RESULTS AND DISCUSSION

The assumption of tensionless contact at the frictionless interface is central to the
developments presented in the preceding sections. For the energy solution to be physically
admissible it is necessary that the contact stresses developed at the interface remain com
pressive for various combinations of the relative rigidity parameter R,4 and the elastic constants
Cij. Should the contact stresses become tensile in any region of the interface then the interaction
problem becomes one of unbonded or unilateral contact between the thin plate and the
transversely isotropic elastic medium. Accounts of such investigations are given by
Weitsman[7], Gladwell and Iyer[8], Gladwell [9], de Pater and Kalker[JO] and Selvadurai[ll].
Frictionless contact between plates and elastic media, induced by highly localized or concen-
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Fig. 2. Contact stress distribution at the interface: halfspace material, isotropic.
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Fig. 3. Contact stress distribution at the interface: halfspace material. magnesium.

2.4

2.0

1.6

1.2

0.8 r--L.--- .:;:~~~

0.4

o
o 0.2 0.4 0.6 0.8 1.0

rIo

Fig. 4. Contact stress distribution at the interface: halfspace material. cadmium.
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trated loads are susceptible to such separation effects. In the present study, some indication of
the nature of the contact stress distribution C.IO be obtained by assigning limiting values for
the relative rigidity parameter RA (i.e. RA -+0 and RA -+00). In the former case, the applied stress
Po is directly transmitted to the interface without any flexural interaction. Therefore, the
contact stresses are always compressive for all choices of the material parameters Cij. The
energy estimate for the contact stresses beneath a perfectly flexible plate will be examined in
relation to Figs. 2-4.

In the latter instance, we note from (14), (16) and (20) that as RA -+00, the contact stress at
the interface reduces to

poa
O'zz(r, 0) = 2V(a2_ ?)' (28)

This result is in agreement with the analytical results derived by Elliott[1] and Sveklo[4] for the
contact stress distribution beneath a rigid circular flat punch resting in smooth contact with a
transversely isotropic elastic halfspace. Here, the contact stress is uninfluenced by the degree
of transverse isotropy of the halfspace region.

For circular plates of intermediate relative rigidity, the contact stresses depend on the
fiexibility characteristics of the circular plate and the material characteristics of the transversely
isotropic elastic medium. The energy estimate of the contact stress distribution at the friction
less interface can be written in the form

_ O':z(r, O) 1 { [ 3 (r)2iJ}
O'zz =----p;-- =v(l- (rla)2) cW +c! ~ Tl2i a (29)

where the constants d depend on the relative rigidity parameter RA• This latter parameter can be
rewritten as

(30)

where K is a reduced relative rigidity parameter defined by

(31)

and

R*=

(32)

The influence of the degree of transverse isotropy and the relative rigidity on the contact
stress at the interface is examined by carrying out numerical computations for certain specific
materials which display transversely isotropic properties. The material constants Cijo k; and II;

characterizing transversely isotropic materials such as magnesium and cadmium are reported by
Chen [12], Atsumi and Itou[13] and Dahan and Zarka[14]. These properties together with
material constants corresponding approximately to an isotropic material are listed in Tables 1
and 2. The contact stress distributions derived for these three categories of materials are

Table I. Elastic constants C;j used (in units of 10'1 dyn/cm~)

Cij C.. CII Cll ell Cil

Approximate isotropy 0.99997 3.5 3.5 1.5 1.5
Magnesium 1.64 5.97 6.17 2.62 2.17
Cadmium 1.S6 11.00 4.69 4.04 3.83
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Table 2. Values of ~i and k, Ii =1.2)

Approximate isotropy
Magnesium
Cadmium

1.00930
2.05017
1.04862

0.99078
0.50411
0.40660

1.01305
2.78203
1.85062

0.98712
0.35945
0.54036

illustrated in Figs. 2-4. Values assigned for the reduced relative rigidity parameter K range
from 1<1' to 10-4

• The relative rigidity of 1<1' corresponds, approximately, to a rigid circular
plate. The contact stress distributions given in Figs. 2-4 indicate that at this upper limit of K the
contact stresses are uninfluenced by the degree of transverse isotropy and the results cor
responds accurately to the contact stress distribution beneath the rigid circular punch. Similarly
at the lower limit of K (= 10-4

) the contact stresses appear to uninfluenced by the degree of
transverse isotropy of the elastic medium. This lower limit therefore corresponds to the energy
solution for the perfectly flexible plate. Theoretically, this contact stress distribution should be
uniform. The energy solution, however, gives a non-uniform result indicating that the contact
stress distribution at this range of relative rigidity is sensitive to the prescribed deflected shape.
To accurately depict the contact stress distribution applicable for the case K -+0 it is necessary
to include further terms in the expansion for w(r) defined by (13). For the isotropic case (Fig. 2)
the contact stresses compare favourably with equivalent results given by Brown[l5] who
employs a power series expansion technique for the analysis of the interaction problem. Similar
results are given by Borowicka[16]. Admittedly, this paper examines only a few specialized
cases of transverse isotropy. As such no general conclusions can be made with regard to the
nature of the contact stress distribution at the frictionless interface. The results given here,
however, indicate that the development of tensile contact stresses can be suppressed in
unilateral contact problems involving circular plates which are uniformly loaded over its entire
surface area.
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APPENDIX A
The stress-strain relationships for the transversely isotropic material is given by

U.. = Cllf.. +Clzf" +Cllfn ;

U" = Clzf.. +Cllf" + Cllfn ;

U,: = C..f,:

Uu = C..f u

where tT and f are the stress and strain tensors referred to the rect. cartesian system.
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Following Green and Zerna[)7] we introduce a set of non-dimensional parameters v. and k. (a =1,2) which are
dependent on the five elastic constants Cir The pair I', and 1'2 are roots of the equation

and ki (i '= \, 2) are defined by

Also ")Ii (i =1,2) are given by

The parameters 1'/2; (i = 0, 1,2,3) and Xi (i = 1,2,3,4) are given by

32 32
1'/2=4-"9 A' -25 Al

256
1'/6=15 Al

and

2 8 16
X, =1'/0+3(1 + 1'/2) +15(A , + 1'/4)+35(A2+ 1'/.)

2 8 16
Xl = 3 1'/0+ IS (A 11'/0 + 1'/1) +35(A21'/0+ A11'/1 + 1'/4)

128 256 1024
+ 315 (1'/2A2+ 1'/4A, + 1'/6) + 693 (1'/4A2+ I'/~I)+ 3003 1'/6Al

8
144 128 2 1188 1

Xl= +32AI+T,h+I44AIA1+TAI +-5-A2

+ - (I - vb){4 + 16A , + 24A2+ 48A 1A2 + 16A ,2 + 36A/}

I A, A2
X4=2+-r+4"'

The constants mo and ml are defined by

where


